简介

这是台大的李琳山老师的课程,课程前八节是基础,后八节课是拓展。

PartI: Fundamental Topics

1.0 Introduction to Digital Speech Processing

Acoustic Models :声学模型,语音波形->语音单位(比如音素)

Lexicon:词典,语音单位->语言单位(比如字,或者单词或者词语)

Language Model:语言模型,比如预测在前一个语言单位下后一个语言单位的概率

2.0 Fundamentals of Speech Recognition

HMM

定义如下: Alt text Alt text Alt text Alt text Alt text Alt text Alt text Alt text Alt text Alt text Alt text Alt text Alt text

N-dim Guassion

Feature Extraction (Front-end Signal Processing)

Pre-emphasis

Endpoint Detection (Speech/Silence Discrimination)

Windowing

Rectangular window

Hamming window

MFCC

N-gram

MAP(最大后验概率)

3.0 Map of Subject Areas

4.0 More about Hidden Markov Models

5.0 Acoustic Modeling

6.0 Language Modeling

7.0 Speech Signals and Front-end Processing

8.0 Search Algorithms for Speech Recognition

Part II: Advanced Topics

9.0 Speech Recognition Updates

10.0 Speech-based Information Retrieval

11.0 Spoken Document Understanding and Organization for User-content Interaction

12.0 Computer-assisted Language Learning(Call)

13.0 Speaker Variabilities: Adaption and Recognition

14.0 Latent Topic Analysis

15.0 Robustness for Acoustic Environment

16.0 Some Fundamental Problem-solving Approaches

17.0 Spoken Dialogues

18.0 Conclusion

语者识别与适应 SI 语者独立 SD 语者相关 SA 语者适应 MAP 最大后验概率 MLLR 最大概率线性压缩 PCA 主成分分析 EigenVoice (PAC) SAT CAT

results matching ""

    No results matching ""

    results matching ""

      No results matching ""