作业

HW01

参数优化

MLP模型:(input_feature,dim)->(dim,dim)xlayer ->(dim,1)

特征选择

loss lr batch seed epoch optim loss model model_params feature
1.7 1e-5 256 5201314 5000 Adam CrossEntropyLoss MLP layer=2,dim=300 0.6
1.31 1e-5 256 5201314 5000 Adam CrossEntropyLoss MLP layer=2,dim=300 0.7
1.13 1e-5 256 5201314 5000 Adam CrossEntropyLoss MLP layer=2,dim=300 0.75
1.31 1e-5 256 5201314 5000 Adam CrossEntropyLoss MLP layer=2,dim=300 0.9

模型复杂

loss lr batch seed epoch optim loss model model_params feature
5.2 1e-5 256 5201314 5000 Adam CrossEntropyLoss MLP layer=1,dim=4 0.7
3.2 1e-5 256 5201314 5000 Adam CrossEntropyLoss MLP layer=1,dim=16 0.7
4.3 1e-5 256 5201314 5000 Adam CrossEntropyLoss MLP layer=2,dim=16 0.7
16 1e-5 256 5201314 5000 Adam CrossEntropyLoss MLP layer=3,dim=16 0.7
2.4 1e-5 256 5201314 5000 Adam CrossEntropyLoss MLP layer=1,dim=64 0.7
1.7 1e-5 256 5201314 5000 Adam CrossEntropyLoss MLP layer=1,dim=128 0.7
1.71 1e-5 256 5201314 5000 Adam CrossEntropyLoss MLP layer=1,dim=400 0.7

优化器和批次

loss lr batch seed epoch optim loss model model_params feature
1.13 1e-5 256 5201314 5000 Adam CrossEntropyLoss MLP layer=1,dim=300 0.7
1.5 1e-5 64 5201314 5000 Adam CrossEntropyLoss MLP layer=1,dim=300 0.7
1.4 1e-5 32 5201314 5000 Adam CrossEntropyLoss MLP layer=1,dim=300 0.7
1.5 1e-5 32 5201314 5000 SGD CrossEntropyLoss MLP layer=1,dim=300 0.7
1.2 1e-5 32 5201314 5000 SGD(m=0.9) CrossEntropyLoss MLP layer=1,dim=300 0.7
0.98 1e-5 4 5201314 5000 SGD(m=0.9) CrossEntropyLoss MLP layer=1,dim=300 0.7
1.3 1e-6 4 5201314 5000 SGD(m=0.9) CrossEntropyLoss MLP layer=1,dim=300 0.7
100 1e-4 4 5201314 5000 SGD(m=0.9) CrossEntropyLoss MLP layer=1,dim=300 0.7
0.95 5e-5 4 5201314 5000 SGD(m=0.9) CrossEntropyLoss MLP layer=1,dim=300 0.7
0.88 5e-5 16 5201314 5000 SGD(m=0.9) CrossEntropyLoss MLP layer=1,dim=300 0.7
2 5e-5 4 5201314 5000 SGD(m=0.9) CrossEntropyLoss MLP layer=2,dim=300 0.7

结果总结

strong

boss不知道用什么架构,过吧

HW02

参数优化

关于特征

acc lr batch seed epoch optim loss model model_params feature
0.53 1e-4 512 1213 150 Adam CrossEntropyLoss MLP layer=2,dim=64 connect=3
0.55 1e-4 512 1213 150 Adam CrossEntropyLoss MLP layer=2,dim=64 connect=5
0.58 1e-4 512 1213 150 Adam CrossEntropyLoss MLP layer=2,dim=64 connect=7
0.60 1e-4 512 1213 150 Adam CrossEntropyLoss MLP layer=2,dim=64 connect=9
0.61 1e-4 512 1213 150 Adam CrossEntropyLoss MLP layer=2,dim=64 connect=11
0.63 1e-4 512 1213 184 Adam CrossEntropyLoss MLP layer=2,dim=64 connect=13
0.64 1e-4 512 1213 221 Adam CrossEntropyLoss MLP layer=2,dim=64 connect=15
0.64 1e-4 512 1213 150 Adam CrossEntropyLoss MLP layer=2,dim=64 connect=17
0.64 1e-4 512 1213 150 Adam CrossEntropyLoss MLP layer=2,dim=64 connect=19

关于层数

acc lr epoch seed batch optim loss model model_params feature
0.64 1e-4 512 1213 512 Adam CrossEntropyLoss MLP layer=2,dim=64 connect=19
0.6526 1e-4 317 1213 512 Adam CrossEntropyLoss MLP layer=3,dim=64 connect=19
0.6543 1e-4 302 1213 512 Adam CrossEntropyLoss MLP layer=4,dim=64 connect=19
0.6546 1e-4 300 1213 512 Adam CrossEntropyLoss MLP layer=8,dim=64 connect=19
0.6520 1e-4 320 1213 512 Adam CrossEntropyLoss MLP layer=12,dim=64 connect=19
0.65 1e-4 512 1213 512 Adam CrossEntropyLoss MLP layer=10,dim=64 connect=19
训练集 acc lr epoch seed batch optim loss model model_params feature
0.64 1e-4 512 1213 512 Adam CrossEntropyLoss MLP layer=2,dim=64 connect=19
0.67 1e-4 70 1213 512 Adam CrossEntropyLoss MLP layer=2,dim=128 connect=19
0.68 1e-4 58 1213 512 Adam CrossEntropyLoss MLP layer=2,dim= 256 connect=19
0.86 0.68 1e-4 70 1213 512 Adam CrossEntropyLoss MLP layer=2,dim=512 connect=19
0.97 0.69 1e-4 8 1213 512 Adam CrossEntropyLoss MLP layer=2,dim= 1024 connect=19
0.98 0.69 1e-4 30 1213 512 Adam CrossEntropyLoss MLP layer=2,dim= 2048 connect=19

关于Droupout

Droupout默认放在激活函数后 | 训练集 | acc | lr | epoch | seed | batch | optim | loss | model | model_params | feature | |:------:|:-----:|:----:|:-----:|:----:|:-----:|:------------------:|:----------------:|:-----:|:-----------------:|:----------:| | 0.72 | 0.741 | 1e-4 | 238 | 1213 | 512 | Adam | CrossEntropyLoss | MLP(Droupout=0.5) | layer=2,dim=512 | connect=19 | | 0.92 | 0.71 | 1e-4 | 110 | 1213 | 512 | Adam | CrossEntropyLoss | MLP(Droupout=0.1) | layer=2,dim= 1024 | connect=19 | | 0.78 | 0.73 | 1e-4 | 100 | 1213 | 512 | Adam | CrossEntropyLoss | MLP(Droupout=0.3) | layer=2,dim= 1024 | connect=19 | | 0.80 | 0.748 | 1e-4 | 191 | 1213 | 512 | Adam | CrossEntropyLoss | MLP(Droupout=0.5) | layer=2,dim= 1024 | connect=19 | | 0.68 | 0.69 | 1e-4 | 110 | 1213 | 512 | Adam | CrossEntropyLoss | MLP(Droupout=0.7) | layer=2,dim= 1024 | connect=19 | | 0.82 | 0.748 | 1e-4 | 100 | 1213 | 512 | Adam | CrossEntropyLoss | MLP(Droupout=0.5) | layer=2,dim= 2048 | connect=19 | | 0.70 | 0.74 | 1e-4 | 100 | 1213 | 512 | Adam | CrossEntropyLoss | MLP(Droupout=0.7) | layer=2,dim= 2048 | connect=19 |

关于Batchnormal

Batchnormal放在激活函数前 | 训练集 | acc | lr | epoch | seed | batch | optim | loss | model | model_params | feature | |:------:|:-----:|:----:|:-----:|:----:|:-----:|:------------------:|:----------------:|:-----:|:-----------------:|:----------:| | 0.97 | 0.68 | 1e-4 | 238 | 1213 | 512 | Adam | CrossEntropyLoss | MLP(Batchnorm) | layer=2,dim=2048 | connect=19 | | 0.94 | 0.67 | 1e-4 | 110 | 1213 | 512 | Adam | CrossEntropyLoss | MLP(Batchnorm) | layer=2,dim= 1024 | connect=19 |

关于Dropout和Batchnorm

训练集 acc lr epoch seed batch optim loss model model_params feature
0.80 0.751 1e-4 250 1213 512 Adam CrossEntropyLoss MLP(Droupout=0.5,Batchnorm) layer=2,dim=2048 connect=19
0.72 0.741 1e-4 250 1213 512 Adam CrossEntropyLoss MLP(Droupout=0.5,Batchnorm) layer=2,dim= 1024 connect=19

关于Batchsize

训练集 acc lr epoch seed batch optim loss model model_params feature
0.72 0.741 1e-4 250 1213 512 Adam CrossEntropyLoss MLP(Droupout=0.5,Batchnorm) layer=2,dim= 1024 connect=19
0.80(184) 0.748(184) 1e-4 250 1213 256 Adam CrossEntropyLoss MLP(Droupout=0.5,Batchnorm) layer=2,dim= 1024 connect=19
0.81(302) 0.751(301) 1e-4 250 1213 512 Adam CrossEntropyLoss MLP(Droupout=0.5,Batchnorm) layer=2,dim= 2048 connect=19

关于weight_decay

训练集 acc lr epoch seed batch optim loss model model_params feature
0.70 0.73 1e-4 250 1213 512 Adam(wd = 1e-4) CrossEntropyLoss MLP(Droupout=0.5,Batchnorm) layer=2,dim= 1024 connect=19
0.71(284) 0.74(284) 1e-4 250 1213 512 Adam(wd = 1e-5) CrossEntropyLoss MLP(Droupout=0.5,Batchnorm) layer=2,dim= 1024 connect=19
0.71(170) 0.74(170) 1e-4 250 1213 512 Adam CrossEntropyLoss MLP(Droupout=0.5,Batchnorm) layer=2,dim= 2048 connect=19

关于RNN

简单RNN

训练集 acc lr epoch seed batch optim loss model model_params feature
0.95 0.71 1e-4 17 1213 512 Adam CrossEntropyLoss RNN+fc(line) layer=2,dim=2048 connect=19
0.94 0.70 1e-4 21 1213 512 Adam CrossEntropyLoss RNN+fc(line) layer=2,dim=1024 connect=19
0.83 0.70 1e-4 20 1213 512 Adam CrossEntropyLoss RNN+fc(line) layer=2,dim=512 connect=19
0.97(149) 0.71(30) 1e-4 17 1213 512 Adam CrossEntropyLoss RNN+fc(line) layer=1,dim=1024 connect=19
0.88(149) 0.70(48) 1e-4 21 1213 512 Adam CrossEntropyLoss RNN+fc(line) layer=1,dim=512 connect=19
0.76(128) 0.70(128) 1e-4 17 1213 512 Adam CrossEntropyLoss RNN+fc(line) layer=1,dim=256 connect=19
0.68(138) 0.66(138) 1e-4 21 1213 512 Adam CrossEntropyLoss RNN+fc(line) layer=1,dim=128 connect=19
0.75(138) 0.71(138) 1e-4 17 1213 512 Adam CrossEntropyLoss RNN+fc(line) layer=2,dim=128 connect=19
0.78(108) 0.71(138) 1e-4 17 1213 512 Adam CrossEntropyLoss RNN+fc(line) layer=3 ,dim=128 connect=19
0.76(139) 0.70(138) 1e-4 21 1213 512 Adam CrossEntropyLoss RNN +fc(line+relue+line) layer=1,dim=256 connect=19
0.84(104) 0.71(32) 1e-4 21 1213 512 Adam CrossEntropyLoss RNN +fc(line+relue+line) layer=2,dim=256 connect=19

(垃圾简单RNN,训练的久效果还不好👎) GRU | 训练集 | acc | lr | epoch | seed | batch | optim | loss | model | model_params | feature | |:---------:|:--------:|:----:|:-----:|:----:|:-----:|:-----:|:----------------:|:-----:|:----------------:|:----------:| | 0.90(37) | 0.72(32) | 1e-4 | 17 | 1213 | 512 | Adam | CrossEntropyLoss | GRU(layer=1,dim=256)+fc(line) | layer=1,dim=256 | connect=19 | | 0.83(13) | 0.73(10) | 1e-4 | 17 | 1213 | 512 | Adam | CrossEntropyLoss | GRU(layer=3,dim=256)+fc(line) | layer=3,dim=256 | connect=19 |

LSTM

训练集 acc lr seed batch optim loss model feature
0.97(56) 0.72(5) 1e-4 1213 512 Adam CrossEntropyLoss LSTM(droupout=0.5,layer=2,dim=512)+fc(line) connect=19
0.84(14) 0.734(8) 1e-4 1213 128 Adam CrossEntropyLoss prefc(line+Droupout=0.5)+LSTM(droupout=0.5,layer=2,dim=512)+fc(line) connect=19
0.84(14) 0.734(8) 1e-5 1213 128 Adam CrossEntropyLoss prefc(line+Droupout=0.5)+LSTM(droupout=0.5,layer=2,dim=512)+fc(line) connect=19
0.86(212)0.76(33) 0.74(33) 1e-4 1213 1024 Adam CrossEntropyLoss prefc(line+Droupout=0.5)+LSTM(droupout=0.5,layer=2,dim=512)+fc(line) connect=19
0.77(47)0.85(212) 0.74(47)0.69(212) 1e-4 1213 2048 Adam CrossEntropyLoss prefc(line+Droupout=0.5)+LSTM(droupout=0.5,layer=2,dim=512)+fc(line) connect=19
0.92(45)0.86(18) 0.762(18)0.73(45) 1e-4 1213 512 Adam CrossEntropyLoss prefc(line+Droupout=0.5)+LSTM(droupout=0.5,layer=6,dim=450)+fc(line) connect=27

results matching ""

    No results matching ""

    results matching ""

      No results matching ""